Section1: Theory of Computer Science

August
- **1.1 Data Representation**
 - 1.1.1 Binary Data
 - 1.1.2 Hexadecimal
 - 1.1.3 Data Storage

September
- **1.3 Hardware**
 - 1.3.1 Logic gates
 - 1.3.3 Input device

October
- **1.3 Hardware**
 - 1.3.4 Output devices

November
- Revision

December
- **Mid-Year Examination**

Section2: Practical Problem-solving and Programming

January
- **2.1 Algorithm Design and Problem Solving**
 - 2.1.1 Problem-Solving and Design

February
- **2.2 Programming (continued)**
 - 2.1.2 Pseudocode

March
- 2.2 Programming (continued)
 - 2.1.2 Pseudocode

April
- Revision

May
- Final Examination
August

Section 1: Theory of Computer Science

1.1 Data Representation

 1.1.1 Binary Data
 1.1.2 Hexadecimal
 1.1.3 Data Storage

<table>
<thead>
<tr>
<th>Contents</th>
<th>Activities or Learning resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINARY AND HEXADECIMAL NOTATION:</td>
<td>The concepts will be demonstrated by solving questions on board.</td>
</tr>
</tbody>
</table>
| Conversion of Binary numbers to and from Denary
 • Perform conversions of binary and hexadecimal number to and from denary system | |
| Conversion of Hexadecimal numbers to and from Denary
 • Perform conversions of binary and hexadecimal number to and from denary system | |
| Use of hexadecimal numbers: | Binary counter – for example: www.mathsisfun.com/binary-decimal-hexadecimal-converter.html |
 • Identify the use of Hexadecimal in representing colors in HTML, representing MAC address, memory dumps, web address, assembly and machine code | |
| Use of binary number system | Binary numbers at Computer Studies Unplugged: http://csunplugged.org/binary-numbers |
 • For IP addressing of resources on the internet
 • Discuss and understand the concept of byte; also learn to calculate the memory requirements in form of Kb, Mb, Gb, Tb. | |
 • Identify common file standards: JPG, GIF, PDF, MP3, MPEG, and MIDI. | |
 Types media files: MIDI & MP3, MP4, JPEG | Simple comparisons at www.bbc.co.uk/schools/gcsebitesize/ict/hardware/1datastoragerev2.shtml |
| Data compression: Lossless and lossy compression applied to music/video, photos, and text files
 • Understand the ways to detect and then correct errors: Parity check, check digits, checksums, ARQ (Automatic Repeat Request)
 • Differentiate between lossless & lossy compression | Useful reinforcement material: http://computer.howstuffworks.com/bytes.htm |
| For Practice: Past paper questions on Binary data:
 Q15: 7010_s12_qp_11
 Q11: 7010_w11_qp_11 | |
| Practice questions to convert to and from GB, MB, KB | |
| Book Reference: | |
 Unit 2 | |
| Handout: Will be shared with students | |
Contents

LOGIC GATES

- Use logic gates to create electronic circuits.
- Understand and define the functions of NOT, AND, OR, NAND, NOR and XOR (EOR) gates, including the binary output produced from all the possible binary inputs.
- Draw truth tables and recognize a logic gate from its truth table.
- Produce truth tables for given logic circuits.
- Produce a logic circuit to solve a given problem.
- Implement a logic circuit using 'NAND' gates only, by replacing each of the basic logic gate into its equivalent NAND gate circuit.

INPUT DEVICES

- Describe the principles of operation of a range of input devices including:
 - Scanners, barcode readers, digital cameras (including CCTV cameras), keyboards, mice, touch screens, microphones, QR code, RFID tags, sensors, Interactive whiteboards etc.
- Describe how these principles are applied to real-life scenarios, for example:
 - Use of Barcodes, QR codes, RFID tags in supermarket
 - Use of 2D, 3D scanners at airports.
 - Use of microphone in Voice Recognition systems
- Describe how a range of sensors can be used to input data into a computer system, including:
 - Light, temperature, magnetic field, gas pressure, moisture, humidity, pH/acidity/alkalinity and motion/infra-red.
- Describe how these sensors are used in real-life scenarios; for example:
 - Burglar alarm system
 - Anti lock braking system
 - Weather forecasting
 - Street lights controlling system

Activities or Learning resources

Book Reference: Unit#11, Pg 274 (from Chris Leadbetter)
Unit#3, (from David Watson and Helen Williams)

Resource: A handout based on the questions from past exams will be shared with the students.

Simple logic simulator using standard symbols:

Downloadable logic gate simulator:
www.softpedia.com/get/Others/Home-Education/Logic-Gate-Simulator.shtml

and
www.logiccircuit.org/

Websites such as

Book Reference: ‘Unit# 3-Hardware’ Pg49-70

Illustrated notes on sensors:

Notes on sensors:
www.bbc.co.uk/schools/gcsebitesize/ict/measurecontrol/Ocomputercontrolrev2.shtml

Activity 5.6: Pg# 104
October

Section1: Theory of Computer Science
1.3 Hardware
1.3.4 Output devices

Contents

OUTPUT DEVICES
- Describe the principles of operation of a range of output devices, including:
 - Inkjet, laser and 3D printers
 - 2D and 3D cutters
 - Speakers and headphones
 - Actuators (Buzzers, motors, valves)
 - Flat-panel display screens (LED, LCD)

- Describe how these principles are applied to real-life scenarios, for e.g.
 - Use of Inkjet printers for best off photos
 - Use of Laser printer for large volume printing
 - Use of 3D Printers, 2D & 3D Cutters in Automated industries.
 - Role of actuators in Control Applications.

Activities or Learning resources

Book Reference: ‘Unit# 3-Hardware’ Pg71-78

Websites such as:
- http://computer.howstuffworks.com/
- www.bbc.co.uk/schools/gcsebitesize/ict/hardware/1datastoragerev2.shtml

Websites such as:
- http://en.wikipedia.org/ which has entries for various related topics

Videos:
Short videos will be shown to further strengthen their concepts

November
Revision

Revision Tests
Practice worksheets
Assignments
Past Papers

December

Mid-Year Examination

January

Section2: Practical Problem-solving and Programming

2.1 Algorithm Design and Problem Solving
 2.1.1 Problem-Solving and Design
 2.1.2 Pseudocode
Contents

PROBLEM SOLVING:

- Understand that every computer system is made up of subsystems.
 - Top-down design approach and discuss the advantages and disadvantage of top-down design approach
- Definition, purpose and testing of Algorithms
- Use of standard methods of solution.
- Application of suitable test data and know the basic data types: String, Integer, and Character and Boolean.
- Explain and apply test data: Normal data. Abnormal and extreme data.
- Identify errors in given algorithms and suggest ways of removing these errors.
 - Differentiate between logical and syntax error
- Dry running of Pseudocodes/flowcharts using trace tables
- Understand the need for validation and verification checks:
 - Range check, Length check/Limit check,
 - type check (character, numeric, alphanumeric) Consistency,
 - Format, Presence
 - check digits and checksum
- Produce an algorithm for a given problem
- Comment on the effectiveness of solution

Activities or Learning resources

- An introduction to algorithmic thinking:
- PowerPoint presentation on flowcharts and program design:
 http://staffweb.itsligo.ie/staff/bmulligan/Lectures/CSFrench/French08.ppt
- Some self-checking flowchart exercises, with outline structure and available operations:
 www.cimt.plymouth.ac.uk/projects/mepres/book8/bk8i1/bk8_1i2.htm
- Pseudocode in ‘Absolute beginner’s guide to programming’:
 http://books.google.co.uk/
- Notes, quizzes and activities for data validation:
 www.bbc.co.uk/schools/gcsebitesize/ict/databases/3datavalidationrev1.shtml
 www.klbict.co.uk/gcse/theory/5_3/5_3_3_valid_verif.htm
- Practice Question from past papers will be given for practice.
- Resource: Paper1 of 7010 from 2005 to 2014

February & March

Section2: Practical Problem-solving and Programming

2.2 Programming (continued)

- 2.2.1 Programming concepts
Contents

- Verification of data, which includes:
 - double entry
 - screen/visual check
 - parity check
 - Checksum.
- Basic data types: Integer, Real, Char, String and Boolean
- Declaration and use of variables and constants
- Use the concept of sequence, selection, repetition, totaling and counting to solve problems using:
 - Selection statements (IF...THEN...ELSE... & Case...OF...OTHERWISE...)
 - Repetition loops (FOR...NEXT, REPEAT...UNTIL, WHILE...DO)
- Use of Operators(+, -, *, /, ^, \&, <, >, <=, >=)

Activities or Learning resources

- Some simple tasks in Scratch:
 www.teach-ict.com/programming/scratch/scratch_home.htm
- Control programming:
- Flowol website:
- Some LOGO websites and ideas:
 www.mathcats.com/gallery/logodownloadinfo.html

April Revision

<table>
<thead>
<tr>
<th>Contents</th>
<th>Activities or Learning resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision Tests</td>
<td>Some simple tasks in Scratch:</td>
</tr>
<tr>
<td>Practice worksheets</td>
<td>Control programming:</td>
</tr>
<tr>
<td>Assignments</td>
<td>www.teach-ict.com/programming/scratch/scratch_home.htm</td>
</tr>
</tbody>
</table>

End of chapter questions:

- Activity 9.9 to 9.13 Pg#185
- Activity 10.4: Pg# 208
- Activity 10.5 : Pg#210
- Activity 10.6: Pg# 212
- End of chapter questions: Pg#216-218
- End of chapter question: Pg# 241

May Final Exams